A 14 sided die is rolled. Find the probability of rolling an odd number. The set of equally likely outcomes is shown below{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

Respuesta :

Explanation:

The ste of numbers on the 14 sided die is given below as

[tex]\left\{1,2,3,4,5,6,7,8,9,10,11,12,13,14\right\}[/tex]

The total sample space is given below as

[tex]n(S)=14[/tex]

The set of required out comes which is the odd numbers is given below as

[tex]R=\lbrace1,3,5,7,9,11,13\rbrace[/tex]

the number of required outcomes is given below as

[tex]n(R)=7[/tex]

To calculate the probability ofrolling an odd number, we will use the formula below

[tex]\begin{gathered} Pr(odd)=\frac{required\text{ }outcomes}{sample\text{ }space} \\ Pr(odd)=\frac{n(R)}{n(S)} \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} Pr(odd)=\frac{n(R)}{n(S)} \\ Pr(odd)=\frac{7}{14} \\ Pr(odd)=\frac{1}{2} \end{gathered}[/tex]

Hence,

The final answer is

[tex]probabaility(odd)=\frac{1}{2}\text{ }or\text{ }0.5[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico