Consider the following functions.S(x) = x2 - 8x + 16 and g(x) = x - 4Step 2 of 2: Find the domain of()).(x). Express your answer in interval notationAnswerDomain in interval notation:

Question:
Explanation:
Consider the following functions:
[tex]f(x)=x^2\text{ - 8x + 16}[/tex]and
[tex]g(x)=x\text{ - 4}[/tex]then:
[tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}=\frac{x^2\text{ -8x +16}}{x\text{ - 4}}[/tex]this is equivalent to:
[tex](\frac{f}{g})(x)=\frac{x^2\text{ -8x +16}}{x\text{ - 4}}[/tex]now, factoring the numerator we get:
[tex](\frac{f}{g})(x)=\frac{(x\text{ - 4})(x\text{ -4})}{x\text{ - 4}}[/tex]Simplifying, we get:
[tex](\frac{f}{g})(x)=\text{ x-4}\frac{}{}[/tex]This is a polynomial, so the domain of this polynomial is all real numbers R. In interval notation, this is:
[tex](\text{ - }\infty,\text{ }\infty)[/tex]Answer: we can conclude that the correct answer is:
[tex](\text{ - }\infty,\text{ }\infty)[/tex]