We will do first the diagram
total fence used 840 ft
The total fence in terms of the variables
3y+2x=840
then we isolate the y
[tex]y=\frac{840-2x}{3}[/tex]then we calculate the area
[tex]A=x\cdot\frac{840-2x}{3}=\frac{840x-2x^2}{3}[/tex]then we have a quadratic equation, which means that the max will be the vertex
the
x coordinate of the vertex can be calculated
[tex]x=\frac{-b}{2a}[/tex]where
a=-2
b=840
we substitute the values
[tex]x=\frac{-840}{2(-2)}=\frac{-840}{-4}=210[/tex]then we susbtitute in the function of the area
[tex]\begin{gathered} A=\frac{840(210)-2(210)^2}{3} \\ A=29400 \end{gathered}[/tex]then we find y
[tex]A=x\cdot y[/tex][tex]y=\frac{A}{x}=140[/tex]The dimensions that maximize the enclosed area
x=210 ft
y=140ft
The maximum area is 29400 ft^2