In order to calculate when the population will be 100, first let's calculate the coefficients A0 and k.
Since the initial population is 1500, we have A0 = 1500.
Then, to calculate the coefficient k, let's use the value of t = 9 and A = 1000, so we have:
[tex]\begin{gathered} 1000=1500\cdot e^{k\cdot9} \\ e^{9k}=\frac{1000}{1500}=\frac{2}{3} \\ \ln (e^{9k})=\ln (\frac{2}{3}) \\ 9k\cdot\ln (e)=-0.405465 \\ 9k=-0.405465 \\ k=-0.045 \end{gathered}[/tex]Now, let's calculate the value of t for A = 100:
[tex]\begin{gathered} 100=1500\cdot e^{-0.045\cdot t} \\ e^{-0.045t}=\frac{100}{1500}=\frac{1}{15} \\ \ln (e^{-0.045t})=\ln (\frac{1}{15}) \\ -0.045t\cdot\ln (e)=-2.70805 \\ -0.045t=-2.70805 \\ t=\frac{-2.70805}{-0.045}=60.18 \end{gathered}[/tex]Rounding to the nearest whole year, we have a time of 60 years.