There are 6 democrats and 6 republicans.
The possible ways of selecting 2 democrats is given by the combination:
[tex]_6C_2=\frac{6!}{2!(6-2)!}=15[/tex]The possible ways of selecting 4 republicans is:
[tex]_6C_4=\frac{6!}{4!(6-4)!}=15[/tex]Now, using the fundamental counting principl, the number of ways of selecting 2 democrats and 4 republicans is:
[tex]_6C_2\cdot_6C_4=15\cdot15=225[/tex]The total number of possible combinations is given by:
[tex]_{12}C_6=\frac{12!}{6!(12-6)!}=924[/tex]Finally the probability is given by:
[tex]P=\frac{\text{ number of ways of selecting 2 democrats and 4 republicans}}{\text{ Total number of possible combinations}}[/tex]Therefore:
[tex]P=\frac{225}{924}=\frac{75}{308}[/tex]Hence the probability is 75/308