A ramp 18 ft long rises to a platform that is 16 ft off the ground. Find x, the angle of elevation of the ramp. Round youranswer to the nearest tent of a degree.

SOLUTION
The triangle is a right angle triangle with the following parameters given in the diagram
[tex]\begin{gathered} \text{angle of elevation,}\theta=x \\ \text{Hypotenuses =18ft} \\ \text{opposite side=16ft} \end{gathered}[/tex]Using the trigonometry ratio for the sine of an angle, we have
[tex]\sin \theta=\frac{opposite}{hypotenuse}[/tex]Then we substituting the parameters into the formula above, we obtain
[tex]\begin{gathered} \sin x=\frac{16}{18} \\ \sin x=\frac{8}{9} \\ \sin x=0.8889 \end{gathered}[/tex]Then the value of x becomes
[tex]\begin{gathered} x=\sin ^{-1}(0.8889) \\ x=62.7^0 \end{gathered}[/tex]Therefore x= 62.7°