Let x and y be the two number. Then, we can write
[tex]\begin{gathered} x+y=55 \\ x\cdot y=684 \end{gathered}[/tex]From the first equation, we have
[tex]y=55-x[/tex]By substituting this result into the second equation, we obtain
[tex]x\mathrm{}(55-x)=684[/tex]which gives
[tex]55x-x^2=684[/tex]we can rewrite this quadratic equation as follows
[tex]x^2-55x+684=0[/tex]Then, we can apply the quadratic formula, that is,
[tex]x=\frac{-(-55)\pm\sqrt[]{(-55)^2-4(1)(684)}}{2}[/tex]which gives
[tex]\begin{gathered} x=\frac{55+\sqrt[]{3025-2736}}{2} \\ x=\frac{55\pm17}{2} \end{gathered}[/tex]Then, the 2 solutions for x are
[tex]\begin{gathered} x=\frac{72}{2}=36 \\ x=\frac{38}{2}=19 \end{gathered}[/tex]Now, we can substitute these solutions into the equation x.y=684. For the first solution, we have
[tex]\begin{gathered} 36\cdot y=684\Rightarrow y=\frac{684}{36}=19 \\ \end{gathered}[/tex]and for the second solution, we have
[tex]19\cdot y=684\Rightarrow y=\frac{684}{19}=36[/tex]Therefore, the two numbers are 19 and 36