We have the following complex number:
[tex]11i^7-2i^5+5i-11[/tex]Let's begin by noting how the powers of i work. To begin with, let's remember that
[tex]i=\sqrt[]{-1}\text{.}[/tex]Knowing that:
[tex]i^1=i,[/tex][tex]i^2=(\sqrt[]{-1})^2=-1,[/tex][tex]i^3=i^2\cdot i=-1\cdot i=-i,[/tex][tex]i^4=i^2\cdot i^2=(-1)(-1)=1.[/tex]Now, notice that
[tex]i^5=i^4\cdot i=1\cdot i=i,[/tex]so the powers of i actually repeat after four integers. In other words:
[tex]i^1=i^5=i^9=i^{13}=\ldots[/tex][tex]i^2=i^6=i^{10}=i^{14}=\ldots[/tex][tex]i^3=i^7=i^{11}=i^{15}=\ldots[/tex][tex]i^4=i^8=i^{12}=i^{16}=\ldots[/tex]This also works the same way for negative powers. Now that we know this, let's focus on the powers of i on the number we were given:
[tex]i^7=i^3=-i,[/tex]so
[tex]11i^7=-11i\text{.}[/tex][tex]i^5=i,[/tex]so
[tex]-2i^5=-2i\text{.}[/tex]Putting all of them together:
[tex]11i^7-2i^5+5i-11=-11i-2i+5i-11=-8i-11=-11-8i\text{.}[/tex]So, the correct answer is option c.