Respuesta :

We have the following complex number:

[tex]11i^7-2i^5+5i-11[/tex]

Let's begin by noting how the powers of i work. To begin with, let's remember that

[tex]i=\sqrt[]{-1}\text{.}[/tex]

Knowing that:

[tex]i^1=i,[/tex][tex]i^2=(\sqrt[]{-1})^2=-1,[/tex][tex]i^3=i^2\cdot i=-1\cdot i=-i,[/tex][tex]i^4=i^2\cdot i^2=(-1)(-1)=1.[/tex]

Now, notice that

[tex]i^5=i^4\cdot i=1\cdot i=i,[/tex]

so the powers of i actually repeat after four integers. In other words:

[tex]i^1=i^5=i^9=i^{13}=\ldots[/tex][tex]i^2=i^6=i^{10}=i^{14}=\ldots[/tex][tex]i^3=i^7=i^{11}=i^{15}=\ldots[/tex][tex]i^4=i^8=i^{12}=i^{16}=\ldots[/tex]

This also works the same way for negative powers. Now that we know this, let's focus on the powers of i on the number we were given:

[tex]i^7=i^3=-i,[/tex]

so

[tex]11i^7=-11i\text{.}[/tex][tex]i^5=i,[/tex]

so

[tex]-2i^5=-2i\text{.}[/tex]

Putting all of them together:

[tex]11i^7-2i^5+5i-11=-11i-2i+5i-11=-8i-11=-11-8i\text{.}[/tex]

So, the correct answer is option c.

RELAXING NOICE
Relax