Given the equation:
[tex]ln(x^2+y^2)=e[/tex]You can find its derivative by using Implicit Differentiation. In order to do this, you need to treat "y" as a function of "x".
The steps are:
1. Set up:
[tex]\lbrack ln(x^2+y^2)\rbrack^{\prime}=(e)^{\prime}[/tex]2. Apply the following Derivatives Rules:
[tex]\frac{d}{dx}(lnu(x))=\frac{1}{u(x)}\cdot u^{\prime}(x)[/tex][tex]\frac{d}{dx}(k)=0[/tex]Where "k" is a constant.
[tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex][tex]\frac{d}{dx}(ux^n)=nu(x)^{n-1}\cdot u^{\prime}(x)[/tex]Then, you get:
[tex](\frac{1}{x^2+y^2})(x^2+y^2)^{\prime}=0[/tex][tex](\frac{1}{x^2+y^2})(2x+2y\cdot y^{\prime})=0[/tex][tex]\frac{2x+2yy^{\prime}}{x^2+y^2}=0[/tex]3. Solve for:
[tex]y^{\prime}[/tex]Then:
[tex]2(x+yy^{\prime})=(x^2+y^2)(0)[/tex][tex]y^{\prime}=\frac{-2x}{2y}[/tex][tex]y^{\prime}=-\frac{x}{y}[/tex]Hence, the answer is:
[tex]y^{\prime}=-\frac{x}{y}[/tex]