Given cos 0 = - 3/5 and cot A < 0, find the tan 0

Solution
Given that cos θ= 3/5 and cot x < 0, then tanθ = ?
Using trigonometric function and angle
[tex]cos=\frac{adj}{hyp}[/tex]USING PYTHAGORAS therorem
[tex]\begin{gathered} adjacent=-3 \\ opposite=x \\ hypotenuse=5 \end{gathered}[/tex][tex]\begin{gathered} hYP^2=OPP^2+ADJ^2 \\ 5^2=x^2+(-3)^2 \\ 25=x^2+9 \\ x^2=25-9 \\ x^2=16 \\ x=\sqrt{16} \\ x=4 \end{gathered}[/tex]Tanθ = opposite/adjacent
[tex]tan\theta=\frac{4}{-3}=-\frac{4}{3}[/tex]