Respuesta :

SOLUTION

Consider the image given below

The image above is a cuboid and the volume of a cuboid is given by the formula

[tex]\text{Volume of cuboid= L x W x H}[/tex]

Where

[tex]\begin{gathered} L=length=m^3n \\ W=\text{width}=mn^3 \\ H=\text{height}=n \end{gathered}[/tex]

Substituting into the formula, we have

[tex]\text{Volume of cuboid=m}^3n\times mn^3\times n[/tex]

Simplifying the expression we have

[tex]m^3\times m^1\times n^1\times n^3\times n^1[/tex]

Applying the rule of indices i.e when the base are the same, we add their powers

Hence.

[tex]\begin{gathered} m^{3+1}\times n^{1+3+1} \\ m^4\times n^5 \end{gathered}[/tex]

Therefore, the monomial becomes

[tex]m^4n^5[/tex]

Answer ; Option D

Ver imagen CosimaI444595
RELAXING NOICE
Relax