Find the change in the car is kinetic energy from the bottom of the hill to the top of the hill

We will determine the energy as follows:
[tex]F=\frac{(6.64\ast10^5)-(3.11\ast10^5)}{16.2}\Rightarrow F=21790.12346...[/tex][tex]\begin{gathered} F=ma\Rightarrow21790.12346=m\ast9.8m/s^2 \\ \\ \Rightarrow m=2223.481985... \end{gathered}[/tex]Now, we determine the velocity:
[tex]v=\sqrt{\frac{2(21790.12346)}{2223.481985}}\Rightarrow v=4.427188725[/tex]Finally we will have:
[tex]\begin{gathered} \Delta k=\frac{1}{2}mv^2\Rightarrow\Delta k=\frac{1}{2}(2223.481985)(4.427188725)^2 \\ \\ \Rightarrow\Delta k=21790.12346 \end{gathered}[/tex]So, the kinetic energy was approximately 21790.1 J.