Respuesta :

To find:

Find the value of and so that () is everywhere differentiable.

Solution:

The limits of f(x) at x = -1 are:

[tex]\lim_{x\to-1^-}f(x)=\operatorname{\lim}_{x\to-1^-}(ax^2+bx+4)=a-b+4...(1)[/tex][tex]\lim_{x\to-1^+}f(x)=\lim_{x\to-1^+}bx^2-2=b-2...(2)[/tex]

if a function is to be everywhere differentiable, then it must also be continuous everywhere. This implies that the one-sided limits must be equal.

Thus,

[tex]\lim_{x\to-1^{-1}}f(x)=\lim_{x\to-1^+}f(x)[/tex]

So, eq 1 = eq 2.

[tex]\begin{gathered} a-b+4=b-2 \\ a-2b=-6...(3) \end{gathered}[/tex]

Next, the derivative one-sided limits must also equal at x = -1.

That is,

[tex](ax^2+bx+4)dx=(bx^2-2)dx[/tex]

Thus,

[tex]2ax+b=2bx[/tex]

Substitute x = -1 in eq 4, then

[tex]2a=3b...(5)[/tex]

Solve eq 3 and eq 5 for a and b.

[tex]a=18\text{ and }b=12[/tex]

RELAXING NOICE
Relax