Respuesta :

Since the R(x) function is given by the following expression

[tex]P(x)\cdot Q(x)=R(x)[/tex]

Solving for Q(x), we have:

[tex]Q(x)=\frac{R(x)}{P(x)}[/tex]

If we substitute the expressions for both functions, we're going to have:

[tex]Q(x)=\frac{2x^3+2x^2-3x-3}{x+1}[/tex]

We can rewrite this expression by factorizing:

[tex]\begin{gathered} Q(x)=\frac{2x^{3}+2x^{2}-3x-3}{x+1} \\ =\frac{2x^2(x+1)-3(x+1)}{x+1} \\ =\frac{(2x^2-3)(x+1)}{x+1} \\ =2x^2-3 \end{gathered}[/tex]

and this is our answer.

[tex]Q(x)=2x^2-3[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico