The given polynomial is,
[tex]f(n)=5n^3+13n^2+3n-1[/tex]According to the factor theorem, x-a is factor of the polynomial f(x) only if f(a)=0.
Hence, n-2 is a factor of polyynomial f(n), then f(2) should be equal to zero.
So, first find f(2).
[tex]\begin{gathered} f(2)=5\times2^3+13\times2^2+3\times2-1 \\ =5\times8+13\times4^{}+3\times2-1 \\ =40+52+6-1 \\ =97 \end{gathered}[/tex]So,
[tex]f(n)=97\ne0[/tex]Therefore, x-2 is not a factor of the given polynomial