By applying the area of similar triangles theorem, we can write
[tex]\frac{area\text{ larger triangle}}{\text{area small triangle}}=(\frac{5}{3})^2=\frac{25}{9}[/tex]since the area of the small triangle is 60 cm^2, we have
[tex]\frac{area\text{ larger triangle}}{\text{6}0}=\frac{25}{9}[/tex]If we move 60 to the right hand side, we get
[tex]\text{area large triangle = 60( }\frac{25}{9})[/tex]which gives
[tex]\begin{gathered} \text{area large triangle = 60( }\frac{25}{9}) \\ \text{area large triangle = }\frac{1500}{9} \\ \text{area large triangle = 1}66.66 \end{gathered}[/tex]that is, the area of the larger triangle is equal to 166.66 cm^2