Explanation
We are given the following information from the table in the image:
[tex]\begin{gathered} Flounder=278 \\ Red\text{ }drum=359 \\ Black\text{ }drum=151 \\ Blue\text{ }fish=305 \\ Sea\text{ }Trout=166 \end{gathered}[/tex]
We are required to determine the probability that the next fish caught is a drum or bluefish.
We can determine the probability with the following details:
[tex]\begin{gathered} Total\text{ }fish=278+359+151+305+166=1259 \\ Blue\text{ }fish=305 \\ Drum=359+151=510 \\ Probaility=\frac{n(E)}{n(S)}=\frac{Number\text{ }of\text{ }required\text{ }outcome}{Number\text{ }of\text{ }possible\text{ }or\text{ }total\text{ }outcome} \end{gathered}[/tex]
Therefore, the probability that the next fish caught is a drum or bluefish is:
[tex]\begin{gathered} Prob.=P(Drum)+P(Bluefish) \\ Prob.=\frac{510}{1259}+\frac{305}{1259} \\ \\ Prob.=\frac{815}{1259}\text{ }or\text{ }0.6473 \end{gathered}[/tex]
Hence, the answer is:
[tex]P(D\text{ }or\text{ }B)=\frac{815}{1259}\text{ }or\text{ }0.6473[/tex]