[tex]\begin{gathered} \text{The lateral area is given as 2}\pi rh,\text{ } \\ \text{where r is the radius of the circle = 5}m \\ \text{and h }=\text{ height of the cylinder = 11m} \\ \text{Lateral area = 2}\times\frac{22}{7}\times5\times11 \\ =\text{ 345.71428 } \\ =345.71m^2\text{ to the nearest hundredth.} \end{gathered}[/tex][tex]\begin{gathered} \text{The surface area = lateral area + area of the two circles top and below} \\ \text{area of a circle = }\pi r^2 \\ \text{area for the two circles = 2 }\pi r^2\text{ = 2}\times\frac{22}{7}\times5^2 \\ \text{area of the two circles = }\frac{1100}{7}\text{ = 157.14285 } \\ We\text{ will add 157.14285 to the lateral surface to get the surface area} \\ \text{Surface area = 157.14285 + 345.71428} \\ =\text{ 502.85714 } \\ S\text{urface area }=502.86m^2\text{ to the nearest hundredth} \end{gathered}[/tex]