Equation: S (t)= -16t^2+960
A) The average rate of change of a function over an interval (a,b) is given by:
[tex]avarege\text{ rate of change = }\frac{change\text{ in y}}{change\text{ in x}}=\frac{s(b)-s(a)}{b-a}[/tex]Then:
[tex]average\text{ rate of change = }\frac{s(4)-s(1)}{4-1}[/tex]For s(4)
[tex]s(4)=-16(4)^2+960=-16(16)+960=-256+960=704[/tex]For s(1)
[tex]s(1)=-16(1)^2+960=-16+960=944[/tex]Therefore average rate of change is:
[tex]\frac{704-944}{4-1}=\frac{-240}{3}=-80[/tex]Answer: average rate of change = - 80 ft/s
B) This is just the value of the derivative when t = 3, so
[tex]\begin{gathered} s(t)=-16t^2+960 \\ s^{\prime}(t)=-2(16)t^{2-1}+0=-32t \\ s(3)=-32(3)=-96 \end{gathered}[/tex]Answer: the instantaneous rate of change = - 96 ft/s
C) This is when s = 0, so:
[tex]\begin{gathered} -16t^2+960=0 \\ -16t^2+960-960=0-960 \\ -16t^2=-960 \\ \frac{-16t^2}{-16}=\frac{-960}{-16} \\ t^2=60 \\ t=\sqrt[]{60} \\ t=7.75 \end{gathered}[/tex]Answer: time = 7.75 s
D) This happens when t = 7.75, so:
[tex]s^{\prime}(7.75)=-32(7.75)=-248[/tex]Answer: instantaneous rate of change of the dollar just before it hits the ground = - 248 ft/s