First, we can find the circumference using the following equation, given that the radius of the base is 9 ft:
[tex]\begin{gathered} C=2\pi r=2(3.14)(9)=56.52ft \\ \Rightarrow C=56.52ft \end{gathered}[/tex]
we have that the circumference of the base is 56.52ft
2.- Next,we can find the area of the base using the formula for the area of a circle:
[tex]\begin{gathered} A=\pi r^2=(3.14)(9)^2=254.34ft^2 \\ \Rightarrow A=254.34ft^2 \end{gathered}[/tex]
then, the area is 254.34ft^2.
3.The slant height is given, and its value is 19 ft
4.-We can find the height using the radius and the slant height with the pythagorean theorem:
[tex]\begin{gathered} h=\sqrt[]{(19)^2-(9)^2}=\sqrt[]{361-81}=\sqrt[]{280}=2\sqrt[]{70} \\ \Rightarrow h=2\sqrt[]{70}=16.73 \end{gathered}[/tex]
thus, the height is 2*sqrt(70) = =16.73ft
5.-The lateral area of the cone can be found using the following equation:
[tex]\begin{gathered} L=\pi r\cdot\sqrt[]{r^2+h^2}=(3.14)(9)\cdot\sqrt[]{(9)^2+(16.73)^2}=536.86ft^2 \\ \Rightarrow L=536.86.ft^2 \end{gathered}[/tex]
6.- We have the following general rule for the surface area:
[tex]\begin{gathered} A_c=\text{lateral surface area + base area} \\ =536.86+254.34=791.2ft^2 \\ \Rightarrow A_c=791.2ft^2 \end{gathered}[/tex]
thus, the surface area of the cone is 791.2ft^2
7.-Finally, for the volume of the cone, we have:
[tex]\begin{gathered} V=\frac{1}{3}\pi r^2h=\frac{1}{3}(3.14)(9)^2(16.73)=1418.37ft^3 \\ \Rightarrow V=1418.37ft^3 \end{gathered}[/tex]
therefore, the volume of the cone is 1418.37ft^3