Respuesta :

We have the variable y, that is proportional to √x.

We can express as:

[tex]y=k\cdot\sqrt[]{x}[/tex]

We know that y = 22 when x = 576.

Then, we can find the constant of proportionality k replacing y and x with the values:

[tex]\begin{gathered} y=k\sqrt[]{x} \\ k=\frac{y}{\sqrt[]{x}} \\ k=\frac{22}{\sqrt[]{576}} \\ k=\frac{22}{24} \\ k=\frac{11}{12} \end{gathered}[/tex]

Knowing the value of k, we can calculate the value of y when x = 331776 as:

[tex]\begin{gathered} y=\frac{11}{12}\sqrt[]{x} \\ y=\frac{11}{12}\sqrt[]{331776} \\ y=\frac{11}{12}\cdot576 \\ y=528 \end{gathered}[/tex]

Answer: y = 528

RELAXING NOICE
Relax