Write an equation of the cosine function with amplitude 2 and period 6π.

The general equation of cosine function is:
[tex]y=a\cos (bx+c)+d[/tex]where:
a = amplitude
[tex]\frac{2\pi}{b}=period[/tex][tex]\frac{-c}{b}=horizontal\text{ shift}[/tex]d = vertical shift
In this case, we have no vertical nor horizontal shifts, then:
c = 0
d = 0
The amplitude is 2, then:
a = 2
The period is 6π, then:
[tex]\begin{gathered} \frac{2\pi}{b}=6\pi \\ 2\pi=6\pi\cdot b \\ \frac{2\pi}{6\pi}=b \\ \frac{1}{3}=b \end{gathered}[/tex]Substituting this information into the general equation, we get:
[tex]\begin{gathered} y=2\cos (\frac{1}{3}x+0)+0 \\ y=2\cos (\frac{1}{3}x) \end{gathered}[/tex]