Answer:
[tex]f\mleft(x\mright)=-2\left(x+2\right)+8[/tex][tex]\begin{gathered} x-\text{ intercept: \lparen-4,0\rparen \lparen0,0\rparen} \\ y-intercept:\text{ \lparen0,0\rparen} \\ \text{ Vertex: \lparen-2,8\rparen} \end{gathered}[/tex]
Step-by-step explanation:
The quadratic function in standard form is represented as:
[tex]ax^2+bx+c=0[/tex]
Therefore, for the given function:
If the vertex is (-2,8) the equation would be represented as;
[tex]\begin{gathered} f(x)=a(x+2)^2+8 \\ \text{ Use one of the given points on the graph:} \\ x-\text{ intercept: \lparen-4,0\rparen \lparen0,0\rparen} \\ y-intercept:\text{ \lparen0,0\rparen} \end{gathered}[/tex][tex]\begin{gathered} 0=a(-4+2)^2+8 \\ 0=4a+8 \\ 4a=-8 \\ a=-\frac{8}{4}=-2 \end{gathered}[/tex]
Hence, the function of the quadratic in standard form is represented as:
[tex]f\mleft(x\mright)=-2\left(x+2\right)+8[/tex]