Solve the equation on the interval 0<=theta<2pi2 sin^2 theta-V3 sin theta = 0

Given the equation
[tex]2\sin ^2\theta-\sqrt{3}\sin \theta=0[/tex]We can rewrite the given equation as:
[tex]2\sin ^{}\theta\sin ^{}\theta-\sqrt{3}\sin \theta=0[/tex]Factoring, we obtain:
[tex]\sin ^{}\theta(2\sin ^{}\theta-\sqrt{3})=0[/tex]Therefore, we can say:
[tex]\begin{gathered} \sin ^{}\theta=0\: \implies\theta=0 \\ \text{Similarly} \\ 2\sin ^{}\theta-\sqrt{3}=0 \\ \implies2\sin ^{}\theta=\sqrt{3} \\ \implies\sin ^{}\theta=\frac{\sqrt{3}}{2} \\ \implies\theta=\sin ^{-1}\frac{\sqrt{3}}{2} \\ \implies\theta=\frac{\pi}{3} \end{gathered}[/tex]Therefore, the solution set in the given interval is:
[tex]\left\lbrace 0,\frac{\pi}{3}\right\rbrace [/tex]