Respuesta :

Given the equation

[tex]2\sin ^2\theta-\sqrt{3}\sin \theta=0[/tex]

We can rewrite the given equation as:

[tex]2\sin ^{}\theta\sin ^{}\theta-\sqrt{3}\sin \theta=0[/tex]

Factoring, we obtain:

[tex]\sin ^{}\theta(2\sin ^{}\theta-\sqrt{3})=0[/tex]

Therefore, we can say:

[tex]\begin{gathered} \sin ^{}\theta=0\: \implies\theta=0 \\ \text{Similarly} \\ 2\sin ^{}\theta-\sqrt{3}=0 \\ \implies2\sin ^{}\theta=\sqrt{3} \\ \implies\sin ^{}\theta=\frac{\sqrt{3}}{2} \\ \implies\theta=\sin ^{-1}\frac{\sqrt{3}}{2} \\ \implies\theta=\frac{\pi}{3} \end{gathered}[/tex]

Therefore, the solution set in the given interval is:

[tex]\left\lbrace 0,\frac{\pi}{3}\right\rbrace [/tex]

RELAXING NOICE
Relax