We will use the property
[tex](fg)(x)=f(x)g(x)[/tex]Given data:
It is given that
[tex]h(x)=\frac{10}{x}-3,g(x)=3x-2_{}[/tex]Now,
[tex]\begin{gathered} hg(x)=h(x)g(x) \\ =(\frac{10}{x}-3)(3x-2) \\ =\frac{10}{x}(3x-2)-3(3x-2) \\ =30-\frac{20}{x}-9x+6 \\ =36-\frac{20}{x}-9x \end{gathered}[/tex]Now hg(4) will be
[tex]\begin{gathered} hg(4)=36-\frac{20}{4}-9(4) \\ =36-5-36 \\ =-5 \end{gathered}[/tex]So, the required answer is -5.