The Volume of a cone is given by the formula
[tex]V_{\text{cone}}=\frac{1}{3}\times area\text{ of circular base}\times height[/tex][tex]\begin{gathered} A_{\text{circular base}}=\pi r^2 \\ A_{\text{cone}}=\frac{1}{3}\times\pi r^2h \end{gathered}[/tex]From the question, the height h= 11feet; radius r = 7 ft.
Substituting the given parameters in the formula to get the volume of the cone
[tex]\begin{gathered} h=11ft;r=7ft;\pi=3.14 \\ V_{\text{cone}}=\frac{1}{3}\times3.14\times(7ft)^2\times11ft \end{gathered}[/tex][tex]\begin{gathered} V_{\text{cone}}=\frac{1}{3}\times3.14\times49ft^2\times11ft \\ V_{\text{cone}}=\frac{1692.46}{3} \\ \text{Vcone}=564.1533ft^3 \\ V_{\text{cone}}=564.15ft^3(\text{nearest hundredth)} \end{gathered}[/tex]Hence, the volume of the cone is 564.15 cubic feet to the nearest hundredth