In the diagram below, GD = 10.1,EF = 28.1, and EG = 16.9. Find the lengthof FC. Round your answer to the nearest tenthif necessary

Since FG is parallel to CD, the triangles EFG and ECD are similar by case AA.
Therefore, we can write the following proportion:
[tex]\frac{EF}{EC}=\frac{EG}{ED}[/tex]Rewriting the segments and using the given values, we have:
[tex]\begin{gathered} \frac{EF}{EF+FC}=\frac{EG}{EG+GD}\\ \\ \frac{28.1}{28.1+FC}=\frac{16.9}{16.9+10.1}\\ \\ \frac{28.1}{28.1+FC}=\frac{16.9}{27}\\ \\ 28.1+FC=\frac{28.1\cdot27}{16.9}\\ \\ 28.1+FC=44.9\\ \\ FC=44.9-28.1\\ \\ FC=16.8 \end{gathered}[/tex]Therefore the length of FC is 16.8 units.