SOLUTION
From the line
[tex]y=-2x-4[/tex]Comparing this to equation of a line in the form of
[tex]y=mx+c[/tex]m= -2.
Let this be the first slope. Hence
[tex]m_1=-2[/tex]When two lines are perpendicular, their slope is related by the formula
[tex]m_1\times m_2=-1[/tex]From here, we have that
[tex]\begin{gathered} m_1\times m_2=-1 \\ -2_{}\times m_2=-1 \\ m_2=\frac{-1}{-2} \\ m_2=\frac{1}{2} \end{gathered}[/tex]Equation of a line in lope-intercept form is give as
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \end{gathered}[/tex]Using m2 to represent m in the equation we have
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-y_1=m_2(x-x_1) \\ \end{gathered}[/tex]Where y1 = 4 and x1 = 3, our equation becomes
[tex]\begin{gathered} y-y_1=m_2(x-x_1) \\ y-4_{}=\frac{1}{2}_{}(x-3_{}) \\ y-4_{}=\frac{1}{2}_{}x-\frac{3}{2} \\ y=\frac{1}{2}_{}x-\frac{3}{2}+4 \\ y=\frac{1}{2}_{}x+\frac{5}{2} \end{gathered}[/tex]Hence the answer is
[tex]y=\frac{1}{2}_{}x+\frac{5}{2}[/tex]