Respuesta :

SOLUTION

From the line

[tex]y=-2x-4[/tex]

Comparing this to equation of a line in the form of

[tex]y=mx+c[/tex]

m= -2.

Let this be the first slope. Hence

[tex]m_1=-2[/tex]

When two lines are perpendicular, their slope is related by the formula

[tex]m_1\times m_2=-1[/tex]

From here, we have that

[tex]\begin{gathered} m_1\times m_2=-1 \\ -2_{}\times m_2=-1 \\ m_2=\frac{-1}{-2} \\ m_2=\frac{1}{2} \end{gathered}[/tex]

Equation of a line in lope-intercept form is give as

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ \end{gathered}[/tex]

Using m2 to represent m in the equation we have

[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y-y_1=m_2(x-x_1) \\ \end{gathered}[/tex]

Where y1 = 4 and x1 = 3, our equation becomes

[tex]\begin{gathered} y-y_1=m_2(x-x_1) \\ y-4_{}=\frac{1}{2}_{}(x-3_{}) \\ y-4_{}=\frac{1}{2}_{}x-\frac{3}{2} \\ y=\frac{1}{2}_{}x-\frac{3}{2}+4 \\ y=\frac{1}{2}_{}x+\frac{5}{2} \end{gathered}[/tex]

Hence the answer is

[tex]y=\frac{1}{2}_{}x+\frac{5}{2}[/tex]

RELAXING NOICE
Relax