Respuesta :

[tex]a^{-2}[/tex]

Explanation

let's remember some properties of the exponents

[tex]\begin{gathered} a^m\cdot a^n=a^{m+n} \\ (\frac{a}{b})^m=\frac{a^m}{b^m} \\ \frac{1}{a^m}=a^{-1} \\ \frac{a^m}{a^n}=a^{m-n} \\ (a^m)^n=a^{m\cdot n} \end{gathered}[/tex]

Step 1

[tex](\frac{a}{a^2})^2[/tex]

a) apply the fourth property

[tex]\begin{gathered} (\frac{a}{a^2})^2 \\ (a^{1-2})^2 \\ (a^{-1})^2 \end{gathered}[/tex]

b) Now, apply the fifth property

[tex]\begin{gathered} (a^{-1})^2 \\ a^{-1\cdot2} \\ a^{-2} \end{gathered}[/tex]

so, the answer is

[tex]a^{-2}[/tex]

I hope this helps you

RELAXING NOICE
Relax