(a/ a raised to the 2 power ) raised to the -2 power

Explanation
let's remember some properties of the exponents
[tex]\begin{gathered} a^m\cdot a^n=a^{m+n} \\ (\frac{a}{b})^m=\frac{a^m}{b^m} \\ \frac{1}{a^m}=a^{-1} \\ \frac{a^m}{a^n}=a^{m-n} \\ (a^m)^n=a^{m\cdot n} \end{gathered}[/tex]Step 1
[tex](\frac{a}{a^2})^2[/tex]a) apply the fourth property
[tex]\begin{gathered} (\frac{a}{a^2})^2 \\ (a^{1-2})^2 \\ (a^{-1})^2 \end{gathered}[/tex]b) Now, apply the fifth property
[tex]\begin{gathered} (a^{-1})^2 \\ a^{-1\cdot2} \\ a^{-2} \end{gathered}[/tex]so, the answer is
[tex]a^{-2}[/tex]I hope this helps you