Given function:
[tex]f(x)=3x^2+12x-4[/tex]a = 3
As a is positive the parabola opens upward. It has a minimum value.
To find the minimum:
1. Find the value of x where the parabola has the minimum value, use the next formula:
[tex]\begin{gathered} x=-\frac{b}{2a} \\ \\ x=-\frac{12}{2(3)}=-\frac{12}{6}=-2 \end{gathered}[/tex]2. Use the value of x where the function has minimum value (step 1) to find the value of the function:
[tex]\begin{gathered} f(-2)=3(-2)^2+12(-2)-4 \\ f(-2)=3(4)-24-4 \\ f(-2)=12-24-4 \\ f(-2)=-16 \end{gathered}[/tex]Then, the minimum value of the given function is -16 (f(-2)=-16)