The given function is-
[tex]j(x)=6x^2+7x-5[/tex]Let's use the quadratic formula
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]Where a = 6, b = 7, and c = -5.
[tex]\begin{gathered} x=\frac{-7\pm\sqrt[]{7^2-4\cdot6\cdot(-5)}}{2\cdot6}=\frac{-7\pm\sqrt[]{49+120}}{12} \\ x=\frac{-7\pm\sqrt[]{169}}{12}=\frac{-7\pm13}{12} \\ x_1=\frac{-7+13}{12}=\frac{6}{12}=\frac{1}{2} \\ x_2=\frac{-7-13}{12}=\frac{-20}{12}=-\frac{5}{3} \end{gathered}[/tex]Then, we add these solutions
[tex]\frac{1}{2}-\frac{5}{3}=\frac{1\cdot3-5\cdot2}{2\cdot3}=\frac{3-10}{6}=\frac{-7}{6}[/tex]