A clock has a radius of 6 inches. The center is 14.5 inches below the ceiling. Record the distance and write a sine or cosine equation. Complete the table and round your answers to the nearest hundredth.

A clock has a radius of 6 inches The center is 145 inches below the ceiling Record the distance and write a sine or cosine equation Complete the table and round class=

Respuesta :

We will have the following:

Equation:

[tex]d^2=(14.5)^2+(6)^2-2(14.5)(6)\cos (\theta)[/tex]

Here we will have that each hour will be separated by 30°.

*We solve for each value of t:

*t = 0:

[tex]d^2=\frac{985}{4}\Rightarrow d\approx15.69[/tex]

*t = 1:

[tex]d^2=\frac{637}{4}\Rightarrow d\approx12.62[/tex]

*t = 2:

[tex]d\approx\sqrt[]{95.56}\Rightarrow d\approx9.78[/tex]

*t = 3:

[tex]d^2=\frac{289}{4}\Rightarrow d=8.5[/tex]

*t = 4:

[tex]d\approx\sqrt[]{95.56}\Rightarrow d\approx9.78[/tex]

*t = 5:

[tex]d^2=\frac{367}{4}\Rightarrow d\approx12.62[/tex]

*t = 6:

[tex]d^2=\frac{985}{4}\Rightarrow d\approx15.69[/tex]

*t = 7:

[tex]d^2=\frac{1333}{4}\Rightarrow d\approx18.26[/tex]

*t = 8:

[tex]d\approx\sqrt[]{396.94}\Rightarrow d\approx19.92[/tex]

*t = 9:

[tex]d^2=\frac{1681}{4}\Rightarrow d=20.5[/tex]

*t = 10:

[tex]d\approx\sqrt[]{396.94}\Rightarrow d\approx19.92[/tex]

*t = 11:

[tex]d^2=\frac{1333}{4}\Rightarrow d\approx18.26[/tex]

*t = 12:

[tex]d^2=\frac{985}{4}\Rightarrow d\approx15.69[/tex]

RELAXING NOICE
Relax