A clock has a radius of 6 inches. The center is 14.5 inches below the ceiling. Record the distance and write a sine or cosine equation. Complete the table and round your answers to the nearest hundredth.

We will have the following:
Equation:
[tex]d^2=(14.5)^2+(6)^2-2(14.5)(6)\cos (\theta)[/tex]Here we will have that each hour will be separated by 30°.
*We solve for each value of t:
*t = 0:
[tex]d^2=\frac{985}{4}\Rightarrow d\approx15.69[/tex]*t = 1:
[tex]d^2=\frac{637}{4}\Rightarrow d\approx12.62[/tex]*t = 2:
[tex]d\approx\sqrt[]{95.56}\Rightarrow d\approx9.78[/tex]*t = 3:
[tex]d^2=\frac{289}{4}\Rightarrow d=8.5[/tex]*t = 4:
[tex]d\approx\sqrt[]{95.56}\Rightarrow d\approx9.78[/tex]*t = 5:
[tex]d^2=\frac{367}{4}\Rightarrow d\approx12.62[/tex]*t = 6:
[tex]d^2=\frac{985}{4}\Rightarrow d\approx15.69[/tex]*t = 7:
[tex]d^2=\frac{1333}{4}\Rightarrow d\approx18.26[/tex]*t = 8:
[tex]d\approx\sqrt[]{396.94}\Rightarrow d\approx19.92[/tex]*t = 9:
[tex]d^2=\frac{1681}{4}\Rightarrow d=20.5[/tex]*t = 10:
[tex]d\approx\sqrt[]{396.94}\Rightarrow d\approx19.92[/tex]*t = 11:
[tex]d^2=\frac{1333}{4}\Rightarrow d\approx18.26[/tex]*t = 12:
[tex]d^2=\frac{985}{4}\Rightarrow d\approx15.69[/tex]