Let the length be x and width be y.
As per the condition:
[tex]x=6y-25[/tex]As per the second condition:
[tex]xy=261[/tex]Combine the two conditions to get:
[tex]\begin{gathered} y(6y-25)=261 \\ 6y^2-25y-261=0 \\ y=9,\frac{-29}{6} \end{gathered}[/tex]Since length is never negative, y=9.
hence the length is given by:
[tex]\begin{gathered} x=6y-25 \\ x=6(9)-25 \\ x=29 \end{gathered}[/tex]Hence the length of the rectangle is 29 meters.