The balance after 9 years can be computed below
[tex]\begin{gathered} A=p(1+\frac{r}{n})^{nt} \\ P=300 \\ \text{rate}=\text{ 8\%=0.08} \\ n=9\times12=108 \\ t=9\text{ years} \\ A=300(1+\frac{0.08}{12})^{108} \\ A=300(1.00666666667)^{108} \\ A=300\times2.04953023579 \\ A=614.859070736 \\ A=614.86 \end{gathered}[/tex]