Need help with mixture problems with system of linear please see attached picture

The Solution:
Let the first mechanic rate per hour be x and the second mechanic rate per hour be y.
Representing the given problem in equations, we have:
[tex]\begin{gathered} 20x+5y=1800\ldots\text{eqn}(1) \\ x+y=165\ldots\text{eqn}(2) \end{gathered}[/tex]We are asked to find the values of x and y.
Step 1:
From eqn(2), find y.
[tex]y=165-x\ldots\text{eqn}(3)[/tex]Step 2:
putting eqn(3) into eqn(1), we get
[tex]20x+5(165-x)=1800[/tex]Simplifying, we get
[tex]20x+825-5x=1800_{}[/tex]Collecting the like terms, we get
[tex]\begin{gathered} 20x-5x=1800-825 \\ 15x=975 \end{gathered}[/tex]Dividing both sides by 15, we get
[tex]x=\frac{975}{15}=65=\text{ \$65}[/tex]Step 3:
Substituting 65 for x in eqn(3), we get
[tex]\begin{gathered} y=165-65 \\ y=100=\text{ \$100} \end{gathered}[/tex]Therefore, the correct answers are:
The first mechanic charges $65 per hour.
The second mechanic charges $100 per hour.