What is the sum of the first five terms of a geometric serieswith

the sum of a geometric serie is given by:
[tex]\begin{gathered} S_n=\frac{a(r^n-1)}{r-1} \\ \end{gathered}[/tex]then
Step 1
a)Given
[tex]\begin{gathered} a_1=10 \\ r=\frac{1}{5} \\ n=5\text{ \lparen first five terms\rparen} \end{gathered}[/tex]b) now,replace in the formula
[tex]\begin{gathered} S_{n}=\frac{a(r^{n}-1)}{r-1} \\ S_n=\frac{10((\frac{1}{5})^5-1)}{\frac{1}{5}-1} \\ S_n=\frac{10(\frac{1}{3125}-1)}{-\frac{4}{5}} \\ S_n=\frac{10(\frac{1-3125}{3125})}{-\frac{4}{5}} \\ S_n=\frac{10(\frac{-3124}{3125})}{-\frac{4}{5}}=\frac{-\frac{31240}{3125}}{-\frac{4}{5}}=\frac{156200}{12500}=\frac{1562}{125} \end{gathered}[/tex]therefore, the answer is
[tex]\frac{1562}{125}[/tex]I hope this helps you