EXPLANATION
Given the system of equations:
(1) 2x -3y = 3
(2) 5x -4y = 4
Isolating x from (1):
[tex]2x\text{ = 3 + 3y}[/tex]Dividing both sides by 2:
[tex]x=\frac{3+3y}{2}[/tex][tex]\mathrm{Substitute\: }x=\frac{3+3y}{2}[/tex][tex]\begin{bmatrix}5\cdot\frac{3+3y}{2}-4y=4\end{bmatrix}[/tex]Simplifying the expression:
[tex]\begin{bmatrix}\frac{15+7y}{2}=4\end{bmatrix}[/tex]Multiplying both sides by 2:
[tex]15+7y=2\cdot4[/tex]Multiplying numbers:
[tex]15+7y=8[/tex]Subtracting -15 to both sides:
[tex]7y=8-15[/tex]Dividing both sides by 7:
[tex]y=\frac{8-15}{7}[/tex]Simplifying:
[tex]y=-1[/tex]Plugging in y= -1 into (1):
[tex]x=\frac{3+3\left(-1\right)}{2}[/tex]Multiplying and adding numbers:
[tex]x=\frac{0}{2}=0[/tex]In conclusion, the value of x in the system of equations is x=0