Respuesta :

Consider triangle ABE and triangle CDE,

[tex]ABCD\text{ is a parallelogram (Given)}[/tex][tex]AB\parallel CD\text{ (Defination of a parallelogram (1))}[/tex][tex]\angle1\cong\angle2,\angle3\cong\angle4\text{ (Alternate interior angle thorem)}[/tex][tex]AB\cong CD\text{ (Defination of a parallelogram (2))}[/tex][tex]\Delta ABE\cong\Delta CDE\text{ (ASA)}[/tex][tex]AE\cong CE,BE\cong DE\text{ (CPCTC)}[/tex][tex]AC\text{ and BD bisect each other at E (Defination of segment bisector)}[/tex]

Answer:

Given

Defination of a parallelogram (1)

Alternate interior angles theorem

Defination of a parallelogram (2)

ASA

CPCTC

Defination of segment bisector

ACCESS MORE
EDU ACCESS
Universidad de Mexico