Respuesta :

Given the function:

[tex]j(x)=3x^3[/tex]

We will find the average rate of change of each function on the interval

[tex]\lbrack1,1+h\rbrack[/tex]

The average rate of change of the function will be given by:

[tex]\frac{j(1+h)-j(1)}{(1+h)-1}[/tex]

So, first, we will calculate j(1+h) and j(1)

[tex]\begin{gathered} j(1)=3\cdot(1)^3=3 \\ j(1+h)=3(1+h)^3=3(1+3h+3h^2+h^3) \\ j(1+h)=3+9h+9h^2+3h^3 \end{gathered}[/tex]

So, the average rate will be:

[tex]\frac{(3+9h+9h^2+3h^3)-3}{1+h-1}=\frac{9h+9h^2+3h^3}{h}=9+9h+3h^2[/tex]

So, the answer will be:

[tex]3h^2+9h+9[/tex]

RELAXING NOICE
Relax