Given:
Fundamental frequency = 262 Hz.
Temperature = 20 degrees celcius
Let's find the length of the pipe.
Apply the resonant frequency:
[tex]f_o=\frac{v}{2L}[/tex]Where:
L is the length.
To find the length, rewrite the equation for L:
[tex]L=\frac{v}{2f_o}[/tex]Where v is te speed, to find the speed, we have:
[tex]\begin{gathered} v=331\sqrt[]{1+\frac{T}{273}} \\ \\ \text{Where:} \\ T=20^0c \\ \\ v=331\sqrt[]{1+\frac{20}{273}} \\ \\ v=331\sqrt[]{1+0.07326} \\ \\ v=331(1.03598) \\ \\ v=342.9\text{ m/s} \end{gathered}[/tex]Thus, to find the length, we have:
[tex]\begin{gathered} L=\frac{342.9}{2\times262} \\ \\ L=\frac{349.2}{524} \\ \\ L=0.67\text{ m} \end{gathered}[/tex]Therefore, the length of the pipe is 0.67 m.
ANSWER:
0.67 m