In this case, we'll have to carry out several steps to find the solution.
Step 01:
Data
point (-2,-3) x1 = -2 y1 = -3
x + 3y = 24
Step 02:
m' = - 1 / m ---> slope of the perpendicular line
3y = - x + 24
y = (- x + 24) / 3
[tex]y\text{ = }\frac{-x}{3\text{ }}+\frac{24}{3}\text{ = }\frac{-1}{3}x\text{ +8}[/tex][tex]m\text{'}=\text{ (}\frac{-1}{-\frac{1}{3}})\text{ = 3}[/tex]Point-slope form of the line
(y - y1) = m (x - x1)
( y - (-3)) = 3 (x - (-2))
y +3 = 3 (x + 2)
y = 3x + 6 -3
y = 3x +3
The solution is:
The perpendicular line equation is:
y = 3x +3