Instructions: Given the function in standard form, use completing the square to write the function in vertex form and then identify the vertex.


Given the function in standard form:
[tex]y=x^2+6x-3[/tex]• First, we need to find the vertex, V = (h, k), as follows:
[tex]h=\frac{-b}{2a}[/tex]where a = 1, b = 6, and c = -3; then:
[tex]h=\frac{-6}{2}=-3[/tex][tex]\begin{gathered} k=f(-3) \\ k=(-3)^2+6(-3)-3 \\ k=-12 \end{gathered}[/tex]The vertex of the quadratic function is V = (-3, -12).
• Vertex form of the quadratic function:
[tex]y=a\left(x-h\right)^2+k[/tex]Replacing in the equation:
[tex]y=(x+3)^2-12[/tex]