Respuesta :

Given the function in standard form:

[tex]y=x^2+6x-3[/tex]

• First, we need to find the vertex, V = (h, k), as follows:

[tex]h=\frac{-b}{2a}[/tex]

where a = 1, b = 6, and c = -3; then:

[tex]h=\frac{-6}{2}=-3[/tex][tex]\begin{gathered} k=f(-3) \\ k=(-3)^2+6(-3)-3 \\ k=-12 \end{gathered}[/tex]

The vertex of the quadratic function is V = (-3, -12).

• Vertex form of the quadratic function:

[tex]y=a\left(x-h\right)^2+k[/tex]

Replacing in the equation:

[tex]y=(x+3)^2-12[/tex]

RELAXING NOICE
Relax