Respuesta :

The given function is

[tex]p(x)=\frac{x^2-9}{x^2-3x-10}[/tex]

At first, factorize up and down

[tex]\begin{gathered} x^2-9=(x-3)(x+3) \\ x^2-3x-10=(x-5)(x+2) \end{gathered}[/tex]

Then the zeroes of the function are -3, 3, and the values of x which make the function undefined are -2, 5

Then p(x) is positive at the values of x

[tex](-\infty,-3)\cup(-2,3)\cup(5,\infty)[/tex]

You can see that from the graph of the function

The graph shows that p(x) is positive (over the x-axis at 3 intervals

[tex]\begin{gathered} (-\infty,-3) \\ (-2,3) \\ (5,\infty) \end{gathered}[/tex]

Ver imagen ZeligT684069

Otras preguntas

ACCESS MORE
EDU ACCESS
Universidad de Mexico