Respuesta :

Answer:

-59

Explanation:

Given the sequence:

[tex]3,1,-1,-3[/tex]

• The first term, a=3

,

• The common difference = 1-3=-2

The nth term of an arithmetic sequence is obtained using the formula:

[tex]a_n=a+(n-1)d[/tex]

In this case: n=32

Therefore:

[tex]\begin{gathered} a_{32}=3+(32-1)(-2) \\ =3+(31)(-2) \\ =3+(-62) \\ =3-62 \\ a_{32}=-59 \end{gathered}[/tex]

The 32nd term of the sequence is -59.

RELAXING NOICE
Relax