Their revenue is given by:
[tex]R(x)=6x[/tex]The cost by:
[tex]C(x)=2x+6500[/tex]And the profit by:
[tex]P(x)=R(x)-C(x)[/tex]Since we need to find the profit when the company sellls 1000 pens, we need to evaluate the functions for x = 1000
[tex]\begin{gathered} R(1000)=6(1000)=6000 \\ C(1000)=2(1000)+6500=2000+6500=8500 \\ so\colon \\ P(1000)=R(1000)-C(1000)=6000-8500=-2500 \end{gathered}[/tex]In order to find the number of pens needed to sell to break even. we can use the following inequality:
[tex]\begin{gathered} P(x)\ge0 \\ so\colon \\ 6x-(2x+6500)\ge0 \\ 6x-2x+6500\ge0 \\ 4x-6500\ge0 \\ 4x\ge6500 \\ x\ge\frac{6500}{4} \\ x\ge1625 \end{gathered}[/tex]