Respuesta :

Vertex form of a quadratic equation:

[tex]y=a(x-h)\placeholder{⬚}^2+k[/tex]

+a if the parabola opens up

-a if the parabola opens down

(h,k) coordinates of the vertex

For the given parabola:

It opens down

Vertex: (1.5, 7)

[tex]y=-a(x-1.5)\placeholder{⬚}^2+7[/tex]

Use 1 point in the parabola in the equation above to find the value of a:

[tex]\begin{gathered} (-2,0) \\ \\ 0=-a(-2-1.5)\placeholder{⬚}^2+7 \\ 0=-a(-3.5)\placeholder{⬚}^2+7 \\ 0=-a(12.25)+7 \\ -7=-12.25a \\ \\ a=\frac{-12.25}{-7} \\ \\ a=0.6 \end{gathered}[/tex]

Then, the equation of the parabola in vertex form is:

[tex]y=-0.6(x-1.5)\placeholder{⬚}^2+7[/tex]

To write it in standard form:

1. Expand the expresion in parentheses:

[tex]y=-0.6(x^2-3x+2.25)+7[/tex]

2. Remove the parentheses and simplify:

[tex]\begin{gathered} y=-0.6x^2+1.8x-1.35+7 \\ \\ y=-0.6x^2+1.8x+5.65 \end{gathered}[/tex]

Then, the equation of the parabola in standard form is:

[tex]y=-0.6x^{2}+1.8x+5.65[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico