Find the standard and vertex formVertex (1.5 , 7 )

Vertex form of a quadratic equation:
[tex]y=a(x-h)\placeholder{⬚}^2+k[/tex]+a if the parabola opens up
-a if the parabola opens down
(h,k) coordinates of the vertex
For the given parabola:
It opens down
Vertex: (1.5, 7)
[tex]y=-a(x-1.5)\placeholder{⬚}^2+7[/tex]Use 1 point in the parabola in the equation above to find the value of a:
[tex]\begin{gathered} (-2,0) \\ \\ 0=-a(-2-1.5)\placeholder{⬚}^2+7 \\ 0=-a(-3.5)\placeholder{⬚}^2+7 \\ 0=-a(12.25)+7 \\ -7=-12.25a \\ \\ a=\frac{-12.25}{-7} \\ \\ a=0.6 \end{gathered}[/tex]To write it in standard form:
1. Expand the expresion in parentheses:
[tex]y=-0.6(x^2-3x+2.25)+7[/tex]2. Remove the parentheses and simplify:
[tex]\begin{gathered} y=-0.6x^2+1.8x-1.35+7 \\ \\ y=-0.6x^2+1.8x+5.65 \end{gathered}[/tex]