Respuesta :

Let the given function be y

[tex]\begin{gathered} \therefore y=\frac{2-3x}{x} \\ \end{gathered}[/tex]

We can simplify and find the limit.

[tex]\begin{gathered} y=\frac{2-3x}{x} \\ y=\frac{2}{x}-3 \\ As\text{ x tends to }\propto \\ \lim _{x\to\infty}(\frac{2}{x}-3)=-3 \end{gathered}[/tex]

This means that the end behaviour of the graph would be the function tending to -3.

Looking at the two graphs, the graph with this end behaviour is

Answer

[tex]y=f(x)[/tex]

RELAXING NOICE
Relax