let
a = journal
b = globes
Since the stand can only contain 100 newspapers,
[tex]a+b\leq100[/tex]The constraint will be
[tex]\begin{gathered} a+b\leq100 \\ a\ge20 \\ b\ge25 \end{gathered}[/tex]To maximize profits
[tex]\text{p}=0.05a+0.10b[/tex]let us represent it with a graph. The corner point (vertices) will be
(20, 25)
(20, 80)
(75, 25)
Therefore,
The maximum profit will be
[tex]\begin{gathered} \text{p}=0.05a+0.10b \\ \text{p}=0.05(20)+0.10(80)=1+8=\text{ \$9} \end{gathered}[/tex]He should sell 20 journals and 80 globes to get the maximum profit($9)