Let 'x' represent the measure of the first angle.
Let 'y' represent the measure of the second angle.
Let 'z' represent the measure of the third angle.
From the statement,
[tex]\begin{gathered} y=4\times x=4x \\ y=4x \end{gathered}[/tex][tex]\begin{gathered} z=18^0+y=18^0+4x \\ z=18^0+4x \end{gathered}[/tex]Note: The sum of angles in a triangle is 180°.
Therefore,
[tex]x+4x+18^0+4x=180^0[/tex]Solve for x
[tex]\begin{gathered} x+4x+4x+18^0=180^0 \\ 9x+18^0=180^0 \\ 9x=180^0-18^0 \\ 9x=162^0 \end{gathered}[/tex]Divide both sides by 6
[tex]\begin{gathered} \frac{9x}{9}=\frac{162^0}{9} \\ x=18^0^{} \\ \therefore x=18^0 \end{gathered}[/tex]Substitute x = 27° into the measure of the second angle and solve for y
[tex]\begin{gathered} y=4\times18^0=72^0 \\ \therefore y=72^0^{} \end{gathered}[/tex]Let us now solve for z, which is the third angle
[tex]\begin{gathered} z=18^0+72^0=90^0 \\ \therefore z=90^0 \end{gathered}[/tex]Hence, the measure of the three angles are
[tex]18^0,72^0,90^0[/tex]