Respuesta :

Solution:

The function is given below as

[tex]v(t)=24,500(0.80)^t[/tex]

Step 1:

To figure out the value of the car after 7 years, we will put t=7

[tex]\begin{gathered} v(t)=24,500(0.80)^{t} \\ v(t)=24,500(0.80)^7 \\ v(t)=5,138 \end{gathered}[/tex]

Hence,

The value of the car after 7 years will be

[tex]\Rightarrow\text{ \$}5138[/tex]

Step 2:

To figure out the value of the car after 12 years, we will put t=12

[tex]\begin{gathered} v(t)=24,500(0.80)^{t} \\ v(12)=24500(0.80)^{12} \\ v(12)=1683.63 \\ v(12)\approx\text{ \$}1684 \end{gathered}[/tex]

Hence,

The value of the car after 12 years to the nearest dollar will be

[tex]\Rightarrow\text{ \$}1684[/tex]